The View from Elsewhere

The Emerging Need for Non-LEO Vantage Points

Mark Schoeberl & Peter Hildebrand & Jay Herman NASA, Goddard Space Flight Center

&

Carol Raymond
NASA, Jet Propulsion Laboratory

Science Drivers

- Choice of vantage point should be driven by science needs
- Some generalized science requirements that drive choice of vantage points
 - High spatial resolution (~ 1 km or less)
 - High vertical resolution ($\sim 1/2$ km or less)
 - Need for active soundings (lidar, radar)
 - High temporal resolution (~15 minutes)
 - Global coverage
- Instrument Requirements
 - Spectral range (Radio->UV)
 - Need absorption measurements
 - Solar/stellar/lunar occultation
 - Sun glint
 - Artificial sources (e.g. GPS)
 - Need emission measurements

Spatial and Temporal Requirements for Earth Science

Some ES Measurement Needs

Technique

Existing Measurements

- Temperature / Moist
- Aerosols
- Vegetation canopy
- Vegetation types
- Crustal stress
- Ocean height
- Ice sheet/ Land height
- Trace gases

New Measurements

- Winds
- Ocean salinity
- Soil moisture
- Ocean mixed layer depth

UV/Vis	NIR	TIR	μ	lidar	radar	radio	Non photonic
		x	X	X		X	
X	X						
				X	X		
X	X	X	X				
					X		
					X		X
				X	X		X
X	X	X	X	X			
X			X	X	X		
			X				
			X		X		
				?			

Orbit Types Discussed Here

- Low Earth Orbit (400-900 km)
- Geostationary (Geosynchronous) (~36,000 km)
- L1 (Full sunlit disk) (~1,500,000 km)
- L2 (Earth limb solar occultation) (~1,500,000 km)

L1, L2 Unstable Lagrange Points L4, L5 The Trojan points (stable)

Low Earth Orbit (LEO)

Advantages

- Polar sun synchronous
 - Provides global coverage once a day (reflected light) or twice a day (active sounders or thermal IR)
 - Provides ~14 solar occultations a day at high latitudes
- Mid to Low -inclination
 - Provides more observations per day (between 2-14)
 - Provides ~ 14 occultations per day at varying latitudes
- Satellites can be reached by the shuttle (e.g. HST)
- Active sensors (radars and lidars) can operate easily from low orbit

Disadvantages

- One to two observations per day gives poor time resolution for rapidly changing phenomena
- Global orbit-to-orbit coverage once per day requires a wide field of view instrument
- Unless special X-band receivers are available, data may have a 1-2 hour latency.

Active Systems

• Lidars

- Advantages
 - Altitude resolution of measurements
 - Specific constituents (aerosols)
 - Winds
- Technology challenges
 - Spatial coverage
- Advantages
 - Lots of new types of measurements (soil moisture, ocean salinity, snow, etc.)
 - All weather for some types of measurements
- Technology challenges
 - Large antennas needed for high spatial resolution
 - Frequencies higher than 640 GHz still challenging

IceSat

Results from GLAS

400-900 km

Geostationary

Advantages

- Provides high time resolution observations
- Can stare to gather photons
 - 1 km Resolution at LEO => 1/7 second photon gathering time
 - In GEO, the same number of photons can be gathered in ~10 m
 - But will need larger aperture to scan the whole region in ~15 min
- Reduced cloud interference

Disadvantages

- Coverage of only about 1/5 or the earth from a single satellite
 - Drifting GEO (1 week orbit) solves some of this
- No polar coverage
- Issues with pointing and geo-referencing

Image coverage range Coverage range for quantitative data (35,875 km)

Why GEO?

GOES

QuickTime™ and a DV/DVCPRO - NTSC decompressor are needed to see this picture.

SeaWIFS July 6

SeaWIFS July 7

SeaWIFS July 8

ESD

Daily Variability of Air Pollution

ш

Diurnal Variation in Atmosphere-Surface Mass/Energy Exchange - a Key Process in Carbon and Water Cycling

Evapotranspiration Carbon Uptake

Stomatal Regulation Links ET and C

Stomata open in response to light.

Stomata close in response to moisture stress, excess leaf temperature, and low humidity.

Some Example System Requirements for a Future GEO System

Data Flow

Assume 100 channels (bands - MODIS has 36)

Observations made every 15 minutes

Pixel Resolution 200m, 16 bits/pixel

One satellite sees 1/5 or the earth

Total data rate needed = 2×10^{10} bits/s per satellite

20 gigabits/second - can't be done with X Band (0.15 gbs)

Optical relays or future Ka band = 2 gigabits/s

Need to move to optical or Ka band downlinks or more onboard compression and processing. These will be major drivers of future systems.

Lagrange Point - L1

- L1 provides an ideal platform for reflected sunlight observations
- Advantages
 - Near global coverage once a day
 - Improved signal to noise through staring
 - Reduced cloud interference
 - Narrow Field of View (0.5°) simplifies optical design
 - Moon calibration, enabling delicate global change measurements spanning many years
 - No shadows
- Disadvantages
 - Limited spatial resolution vs exposure because of 0.5 km/sec Earth rotation at equator
 - Limited polar observations
- Technology challenges
 - Geo-referencing
 - Data rates

Triana/DSCOVR L1 Mission

Lagrange Point - L2

- L2 permits solar occultation of the Earth's atmosphere from visible to 4 μ
- Advantages
 - Near global coverage once a day (0.1° latitude x 2° longitude)
 - High resolution for altitude profiles (1 to 2 km)
 - Good sensitivity for greenhouse gases
 - Can observe from middle troposphere to middle stratosphere (50 km)

Disadvantages

- Requires large (up to 8 meter) interferometer
- Lowest altitude is 8 km
- Technology challenges
 - High speed closed loop control for Active Optics
 - Data rates
 - Thermal control of instrument

Future Observing Systems

- LEO visible and IR sensor capability will be migrating to GEO, L1 and L2
- Advantages
 - Improved time resolution
 - Equivalent spatial resolution
 - Improved signal to noise through staring
 - Reduced cloud interference
- Disadvantages
 - Multi-platform needed for global coverage
 - Fewer polar observations
 - Too far out for active systems
- Technology challenges
 - Geo-referencing
 - Data rates
 - Large apertures needed for passive μ-wave
- Active Sensors will stay at LEO in the near future
 - For Geo need 3600x more power for lidars and radars assuming current resolution and S/N